شبیه سازی فرایند بارش- رواناب با استفاده از شبکة عصبی- مصنوعی و سیستم فازی عصبی تطبیقی و رگرسیون چندمتغیره (مطالعة موردی: حوضة آبخیز خرم آباد)
نویسندگان
چکیده
مقدار دبی یا رواناب خروجی از یک حوضة آبخیز از اهمیت زیادی برخوردار است؛ زیرا کمبود آن ممکن است موجب خسارات مالی و مازاد آن به صورت سیلاب ممکن است موجب خسارات جانی و مالی شود. در این پژوهش با استفاده از شبکة عصبی مصنوعی پرسپترون چندلایه (mlp) و مدل فازی عصبی تطبیقی (anfis) و روش رگرسیون چندمتغیره، فرایند بارش- رواناب به صورت روزانه در حوضة آبخیز خرم آباد شبیه سازی شد. برای ورودی ها از ترکیب های مختلف از ورودی های بارندگی همان روز، یک روز قبل و دو روز قبل استفاده شد. تابع عضویت ورودی های مدل anfis استفاده شده در این مطالعه، ذوزنقهای، مثلثی، گوسی و گوسی نوع 2 است. مدل mlp بهکار رفته با یک لایة پنهان و تعداد نورون های متغیر ارزیابی شد. نتایج نشان داد که مدل عصبی فازی تطبیقی (anfis) عملکرد بهتری از شبکة عصبی مصنوعی پرسپترون چندلایه (mlp) و مدل رگرسیون چندمتغیره دارد. همچنین با افزایش تعداد ورودی ها و دخالت دادن بارندگی یک و دو روز قبل، عملکرد هر سه مدل بهتر می شود.
منابع مشابه
شبیهسازی فرایند بارش- رواناب با استفاده از شبکة عصبی- مصنوعی و سیستم فازی عصبی تطبیقی و رگرسیون چندمتغیره (مطالعة موردی: حوضة آبخیز خرمآباد)
مقدار دبی یا رواناب خروجی از یک حوضة آبخیز از اهمیت زیادی برخوردار است؛ زیرا کمبود آن ممکن است موجب خسارات مالی و مازاد آن بهصورت سیلاب ممکن است موجب خسارات جانی و مالی شود. در این پژوهش با استفاده از شبکة عصبی مصنوعی پرسپترون چندلایه (MLP) و مدل فازی عصبی تطبیقی (ANFIS) و روش رگرسیون چندمتغیره، فرایند بارش- رواناب بهصورت روزانه در حوضة آبخیز خرمآباد شبیهسازی شد. برای ورودیها از ترکیبهای ...
متن کاملشبیه سازی فرآیند بارش- رواناب با استفاده از شبکه عصبی مصنوعی و سیستم فازی- عصبی تطبیقی (مطالعه موردی: حوزه آبخیز حاجیقوشان)
متن کامل
مدلسازی بارش- رواناب با سیستم استنتاج فازی- عصبی تطبیقی (ANFIS) و رگرسیون خطی چندمتغیره (MLR)
در این پژوهش، کارآیی سیستم فازی- عصبی برای برآورد رواناب ناحیه کوهستانی حوضه هراز مورد ارزیابی قرار گرفت. هدف ایجاد مدلی با توابع و درجه عضویت مناسب است که بتواند رابطه بارندگی- رواناب را در یک حوضه بهدرستی برقرار کند. بدین منظور برای پیشبینی رواناب، 44 ترکیب مختلف از پارامترهای بارندگی، دما، تبخیر، دبی جریان و شاخص بارش پیشین با تأخیر زمانی بین آنها بهصورت روزانه طی دوره 32 سال آماری وارد م...
متن کاملشبیه سازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی(مورد: حوضه آبخیز فریدن)
سیل، یکی از پدیدههای ویرانگر طبیعی است که پیشبینی آن از اهمیت بالایی برخوردار است و در این میان برآورد بارش- رواناب به دلیل تأثیرگذاری عوامل مختلف، دشوار است. در این پژوهش با استفاده از شبکه پرسپترون چند لایه(MLP)، قانون یادگیری پسانتشار خطا(BP)، الگوریتم لونبرگ- مارکوارت(LM) و معیارهای RMSE و R2 جهت کارایی مدل، 6 سناریو تعریف گردید. بررسی حالات مختلف نشان داد که بهترین مدل شبکه عصبی جهت شبی...
متن کاملشبیه سازی فرآیند بارش- رواناب با استفاده از شبکه عصبی مصنوعی و سیستم فازی- عصبی تطبیقی (مطالعه موردی: حوزه آبخیز حاجی قوشان)
پیشبینی رواناب به صورت کوتاه مدت به دلیل رابطه مستقیم آن با چگونگی تعامل مدیران با خطرات جانی ناشی از سیلابها، از اهمیت خاصی برخوردار است. در این تحقیق با استفاده از شبکههای عصبی مصنوعی ( ann ) و فازی عصبی تطبیقی ( anfis )، اقدام به شبیهسازی فرآیند بارش- رواناب به صورت روزانه، در حوزه آبخیز حاجیقوشان شده است. در این سیستمها سه ترکیب مختلف ورودی شامل بارندگی همان روز، بارندگی همان روز و ر...
متن کاملمدلسازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی و شبکه فازی- عصبی تطبیقی در حوزه آبخیز کسیلیان
Rainfall runoff modeling and prediction of river discharge is one of the important practices in flood control and management, hydraulic structure design and drought management. The present article aims to simulate daily streamflow in Kasilian watershed using an artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS). The intelligent methods have the high potential for dete...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
اکوهیدرولوژیناشر: دانشکده علوم و فنون نوین دانشگاه تهران
ISSN 2423-6098
دوره 2
شماره 2 2015
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023